
Journal of Computational Physics157,256–279 (2000)

doi:10.1006/jcph.1999.6374, available online at http://www.idealibrary.com on

Multi-Block Large-Eddy Simulations
of Turbulent Boundary Layers

Andrea Pascarelli,∗ Ugo Piomelli,∗ and Graham V. Candler†
∗Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742;†Department

of Aerospace Engineering and Mechanics, University of Minnesota, Minneapolis, Minnesota 55455

Received December 18, 1998; revised August 30, 1999

Time-developing turbulent boundary layers over an isothermal flat plate at free-
stream Mach numbers of 0.3 and 0.7 are computed using an explicit finite-difference
method on structured multi-block grids. The size of each block is adjusted depending
on the dimension of the largest structures present locally in the flow. This alleviates
the cost of calculations in which the wall layer is resolved, and may result in substan-
tial savings of memory and CPU time, if several layers are used. In the calculations
presented the near-wall region is computed using a domain with a spanwise length
L+o = 820, which is sufficient to contain several streaks. This grid block is repeated
periodically in the spanwise direction. The outer layer, which contains larger struc-
tures, is computed using a domain that is twice as wide (L+o = 1640). Although the
flow at the interface between the blocks has a periodicity length determined by the
inner-layer block, within a few grid points longer wavelengths are generated. The
velocity statistics and rms intensities compare well with single-block calculations
that use substantially more grid points.c© 2000 Academic Press

1. INTRODUCTION

Many technological applications involving the interaction of a fluid stream with solid
boundaries result in the formation of turbulent boundary layers. For this reason, turbulent
boundary layers have been considered to be one of the most important “building block” flows
and have been the subject of extensive experimental, theoretical, and numerical studies.

The solid surface produces complex temporally and spatially varying flow structures,
which typically have very small time and length scales in the near-wall region as compared
to the overall flow scales. In incompressible flow turbulence consists of dynamically regen-
erating coherent structures [1]. Near the solid surface [z+ ≤ 30, wherez+ = zρwuτ /µw is
the distance from the solid surface in wall units,uτ = (τw/ρw)1/2 is the friction velocity,
τw the shear stress,ρw the fluid density andµw the viscosity at the wall], longitudinal flow
structures (streaks) are observed that have widths ranging between 20 and 80 wall units,
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and lengths that can exceed 2000 wall units. Typically, the low speed streaks are spaced
about 100 wall units apart in the spanwise direction. There is substantial evidence that the
streaks are generated by vortical structures, such as streamwise or quasi-streamwise vortices
and “horseshoe” or “hairpin” vortices, whose dimensions scale in wall units. The turbulent
motion due to these eddies is responsible for much of the Reynolds stress and turbulent
kinetic energy production in boundary layers.

The region extending from the wall toz+ ≈ 100 encompasses the most active zone, insofar
as the production of Reynolds stress is concerned. In the logarithmic layer at approximately
z+ = 100, there is no evidence of the streaky structures that were present at locations nearer to
the wall [2, 3]. On the other hand, flow-visualization experiments and numerical simulations
show that the turbulence in the outer layer, especially forz/δ >0.5 (δ being the boundary
layer thickness) is intermittent, with large-scale structures interspersed between regions of
irrotational flows. The scale of these structures is larger than that of the turbulence in the
inner layer, although these eddies are often composed of fluid that was ejected from the
near-wall region [2]. The highly irregular interface between the turbulent and non-turbulent
flow exhibits three-dimensional bulges on the scale ofδ both in the streamwise and spanwise
directions, and narrow entrainment eddies, as observed by Robinson [1].

The different length scales of the turbulent eddies in the inner and outer layers can pose a
significant challenge for numerical simulations that resolve the energy-carrying structures,
such as direct and large-eddy simulations of turbulence. Chapman [4] and Reynolds [5]
studied the grid requirements necessary to resolve the turbulent boundary layer. In the outer
layer, the turbulent eddies scale withδ. To resolve such structures it is necessary to use a
grid-spacing scaled in outer units,1xi /δ. The number of grid points required to resolve
the outer layer in each direction isNi = Li /1xi ∼ Li /δ (where Li is the length of the
computational domain). Assuming that the outer region begins at some fixed fraction ofδ,
and that the boundary-layer thickness scales likeRe−0.2 (whereRe=U∞l/ν is the Reynolds
number based on the free-stream velocity,U∞, and a reference length,l , of the same order
as the computational domain size,Li ), it is easy to verify that the total number of grid points
required to resolve the outer layer of an attached turbulent boundary layer is proportional
to Re0.4, sinceN1∼Re0.2, N2∼Re0.2, andN3∼Re0 [4].

Since the inner-layer structures scale in wall units, the grid spacing in wall units,1x+i =
1xi uτ /ν, must be kept constant. This results in a number of points in each direction given
by

Ni = Li

1xi
= ν

1xi uτ

Li

l

lU∞
ν

uτ
U∞
= 1

1x+i

Li

l
Re

√
C f

2
∼ Re1−α, (1)

where it is assumed thatC f ∼Re−2α. Typical values ofα are in the rangeα' 0.1− 0.125,
giving a total number of grid points that scales likeN= N1N2N3∼Re2.6.

These scaling arguments dictate the size of computational grids that must be used by
numerical simulation methods that resolve the energy-carrying turbulent flow structures. In
direct numerical simulations (DNS) all of the relevant structures are resolved, down to the
smallest scales of motion, and no modeling is used. In large-eddy simulations (LES), only
the energy-carrying structures are computed accurately; the small, subgrid, scales, which
are more isotropic and drain energy from the large scales through the cascade process,
are modeled. LES can result in significant savings over DNS, in terms of computational
costs, especially when no solid boundaries are present: if the grid size corresponds to a
wavenumber in the inertial region of the spectrum, the resolution required by LES becomes
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independent of the Reynolds number. When the energy-carrying structures are Reynolds-
number dependent, as is the case in the near-wall region of a boundary layer, the cost
of the calculations is again affected by the Reynolds number, and is driven by the inner-
layer resolution requirements. Although significant savings can be achieved over DNS, the
application of LES to high Reynolds number external flows is still expensive.

One possible approach to bypass this limitation in LES is to model the wall layer entirely.
Assuming that the near-wall layer is in equilibrium, approximate boundary conditions for
the wall stress can be derived using the standard logarithmic law [6–8]. Balaraset al. [9]
introduced an alternative approach employing boundary-layer equations in attached channel
and duct flows, and Cabot [10] applied this method to the separated flow behind a step.
Modeling the wall layer can allow the extension of LES to flows at very high Reynolds
numbers, but only at the expense of the added empiricism introduced by the approximate
boundary conditions. Thus, wherever wall models do not give sufficient accuracy, the near-
wall layer must be resolved.

In computational fluid dynamics there are different ways of discretizing the physical
domains. Based on the connectivity, the grids can be classified as structured, unstructured, or
multi-block. The most straightforward approach is the structured grid, in which connectivity
information is not needed explicitly so that each mesh point is identified by indices, and
the neighbors are known. While a structured grid is simple to implement and allows easy
control of the order of accuracy and conservation properties of the scheme, it can result
in a large number of points in regions where they are not needed. In a boundary layer,
for instance, the spanwise and stremwise spacings need to be nearly constant, to satisfy
the inner-layer resolution requirements discussed above. However, in the outer layer the
grid spacing specified by the inner-layer resolution requirement results in an excessively
fine mesh. For example, in LES calculations of channel flow, Piomelli [11] found that the
grid size that corresponds to the smallest resolved structures which was barely beyond the
energy-carrying range of the spectrum in the near-wall region, fell in the decaying region
in the outer flow domain. Thus, for all practical purposes, the simulation was a DNS in the
core of the flow. Multiple nested grids of varying resolution, as presented in [26], can also
be used to resolve the near-wall motions more efficiently. Such an approach requires an
inter-grid communication algorithm to advance the solution on the different meshes.

Unstructured grids allow for a local flow-dependent grid adaptation to improve the accu-
racy of the computation without incurring the penalties associated with global refinement.
Although unstructured grids are the most flexible tool to address resolution issues, they
have not yet been applied to DNS and LES very extensively, due to their higher cost, and
to the difficulty in achieving high order of accuracy.

Multi-block grids, also called “macro-element” or “composite” grids, aim at combining
the advantages of structured and unstructured meshes. They are based on the partitioning of
the physical domain into a number of subdomains (“blocks” or “macro-elements”). On the
macro-scale, the grid is composed of unstructured blocks, while within each macro-element,
either an unstructured or (more commonly) a structured mesh can be used. Although less
flexible than fully unstructured grids, this approach can handle more complex geometries,
more efficiently, than the structured-mesh method. Furthermore, it can be extended to paral-
lel algorithms in a straightforward manner. One disadvantage of this method is the fact that
at interfaces information needs to be exchanged between blocks. This may require iterative
solution of the governing equations in each block (if the solver is implicit), interpolation (if
the grid points in the two blocks do not coincide), and may affect the conservation properties
of the scheme.
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Despite those shortcomings, by varying the size and resolution of the subdomains, a
multi-block method can efficiently resolve flow fields characterized by multiple length-
scales with fewer grid points than a simply connected single-block structured grid. Only
block-structured (or unstructured) methods are feasible for DNS and LES of high Reynolds-
number turbulent flows, since they allow the fine-grid region to be restricted to the inner
layer, and the mesh to be coarsened in all directions in the outer flow. The Reynolds-
number dependence of the number of mesh points is still valid, as shown by Kravchenko
et al. [12], who performed calculations of a turbulent channel flow using a B-spline-based
block-structured algorithm, and recovered Chapman’s predictions [4].

The strong Reynolds-number dependence of the number of required grid points is due to
the fact that the entire computational domain is discretized with a grid spacing that scales on
the very small inner variables. In principle, the inner layer does not require a computational
domain as large as the outer one. Jimenez and Moin [13] investigated the “minimal channel
flow unit” and concluded that a computational domain that spans approximately 250–
350 wall units in the streamwise direction and 100 wall units in the spanwise direction is
sufficient to sustain turbulence in plane-channel flow. Thus, a computational domain of these
dimensions contains a sufficient number of turbulent structures (hairpins, quasi-streamwise
vortices, etc.) to allow the dynamic cycle of generation and destruction of such eddies to
take its natural course.

A possible way to decrease the cost of the calculation of the inner layer in flows that
are homogeneous in one direction is to use a nearly minimal flow-unit in the near-wall
region that is repeated periodically, and a larger computational domain in the outer region
(Fig. 1). In the spanwise and wall-normal directions, the “inner-layer unit” (ILU) would have
constant dimensions in wall units. Therefore, its size (in outer variables) would scale like
Re−1, and it would require a constant number of grid points in the spanwise and wall-normal
directions. The number of points required to resolve an ILU would be proportional toRe0.9,
since the streamwise length of the ILU is constant and the mesh in that direction still needs
to be refined as the Reynolds number is increased. As the Reynolds number increases, the
physical dimensions of the inner-layer unit would decrease, and the unit would be replicated
as many times as necessary to match the outer flow domain (Fig. 1b). For flows that are
homogeneous in two directions (such that the ILU can be repeated in the streamwise, as
well as in the spanwise, direction), the cost of the ILU computation becomes independent
of Reynolds number.

If one layer of ILUs interfaces directly with the outer layer block, this technique can
result only in an alleviation of the cost of the simulation. For very high Reynolds numbers,
in fact, there would still be a matching region between inner scales and outer scales in which
the local turbulent structures scale like the distance from the wall; in this layer, the number

FIG. 1. Sketch of the multi-block structure in the cross-plane with “inner-layer units.” The flow is out of the
paper. (a) Low Reynolds number; (b) intermediate Reynolds number; (c) high Reynolds number.
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of points would be proportional to

N ∼
∫ Lx

0

∫ L y

0

∫ δ

CRe−1
τ

1

z3
dz dy dx∼ Re2

τ . (2)

This would still require the grid size in the outer layer to be a strong function of the Reynolds
number, and the cost to be asymptotically proportional toRe2

τ approximately. This might
still be acceptable for moderate Reynolds numbers [Reτ ∼O(103−104)], but for very high
Recalculations, several layers would have to be employed (as sketched in Fig. 1c), with
progressively increasing width and length, in order to achieve substantial savings. This
could make the cost proportional toRe(or logRefor flows homogeneous in two directions)
and be extremely beneficial for highRecalculations.

The feasibility of the proposed method hinges on the interface between the inner-layer and
outer-layer domains. The largest eddy present at the interface is determined by the size of
the ILU, which introduces a characteristic periodicity length into the flow. However, if some
non-periodic perturbation is present in the initial conditions, lower modes (larger structures)
will be generated that eventually destroy the periodicity. There will be an adjustment layer
in which the flow is still characterized by the periodicity length imposed by the inner-layer
unit. If the thickness of this layer is small, the proposed approach may be feasible.

In this study the feasibility of the multi-block approach proposed above will be tested,
with special emphasis on the periodicity issue mentioned above, and on the continuity
properties of the solution at the interface. The test-case chosen is a wall-bounded flow with
two directions of homogeneity, namely a temporally developing boundary layer. This flow
was chosen because it contains many of the features of importance in a spatially developing
flow, which is technologically more important, but does not require special treatment of
the inflow and outflow conditions. Single-block LES calculations were performed at two
Mach numbers, and the results are compared with those obtained using the inner-layer
unit approach. To separate the errors due to the periodicity of the inner layer from the
numerical errors arising from the use of multi-block grids (interpolation, interface between
subdomains) the calculations were carried out using an explicit code, with one-to-one
correspondence between the domains. Studies of real flows would probably require non-
conforming meshes, as well as several layers of progressively larger ILUs. With the same
aim, a well-established subgrid-scale model is used, and no attempt is made to employ more
advanced, and perhaps more accurate, models.

In the next section, the problem formulation, numerical method, and subgrid-scale model
used are described. Then, computational results are presented and discussed. Finally, some
conclusions are drawn in the last section.

2. PROBLEM FORMULATION

2.1. Governing Equations

The set of differential equations in Cartesian coordinates satisfied by a viscous flow in
the absence of body forces reads

∂ρ

∂t
+ ∂

∂xj
(ρu j ) = 0, (3)
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∂ρui

∂t
+ ∂

∂xj
(ρu j ui + pδ j i − σ j i ) = 0, (4)

∂ρE

∂t
+ ∂

∂xj
[(ρE + p)u j − σ j i ui + qj ] = 0, (5)

where the summation convention applies to repeated indices. Here,ρ is the fluid density,
u j the fluid velocity component inj direction,E= ε+ ukuk/2 is the total energy per unit
mass (whereε=CvT is the internal energy per unit mass,Cv is the specific heat at constant
volume, andT the temperature),p is the thermodynamic pressure,σ j i is the viscous stress
tensor, andqj is the conduction heat flux. In the present work, the fluid is assumed to be an
ideal gas with constant specific heats (whose ratio isγ = 1.4). Thus, the pressure is related to
ε by the equation of statep= (γ − 1)ρε. The viscous stress tensor and the conduction heat
flux vector are expressed as functions of the strain-rate tensorSi j = (∂ui /∂xj + ∂u j /∂xi )/2
and the temperature gradient, according to

σi j = 2

(
1− δi j

3

)
µSi j ; qj = −k

∂T

∂xj
, (6)

whereµ is the molecular viscosity, andk the thermal conductivity. The viscosityµ is
assumed to depend only on temperature and is calculated using the Sutherland law

µ = µr
Tr + TS

T + TS

(
T

Tr

)3/2

, (7)

whereµr is the reference viscosity at a reference absolute temperatureTr . The thermal con-
ductivityk is computed assuming a constant molecular Prandtl number,Pr≡Cpµ/k= 0.72
and the constantTS is assumed to be equal to 110.4 K [14].

2.2. SGS Modeling

The governing equations for LES are obtained through the application of a spatial filter
to the Navier–Stokes equations to separate the effects of the (large) resolved scales from the
(small) subgrid-scale motions. The filtering operation is written in terms of a convolution
integral as

f̄ (x, t) =
∫

D
G(x− ξ; 1̄) f (ξ, t) dξ, (8)

whereD is the flow domain andG is some spatial filter for which∫
D

G(x− ξ; 1̄) dξ = 1. (9)

The filter introduces a scalē1, the filter width, that represents the smallest turbulence scale
allowed by the filter itself. In the present calculations, the tophat filter is used in all three
directions. For compressible flows, it is advantageous to use Favre-filtering [15, 16] to
avoid the introduction of subgrid-scale terms in the equation of conservation of mass. A
Favre-filtered variable is defined as̃f = ρ f /ρ̄. The resulting Favre-filtered compressible
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Navier–Stokes equations of motion are given by

∂ρ̄

∂t
+ ∂

∂xj
(ρ̄ũ j ) = 0, (10)

∂

∂t
(ρ̄ũi )+ ∂

∂xj
(ρ̄ũ j ũi + p̄δi j − σ̃ j i ) = −∂τ j i

∂xj
(11)

∂

∂t
(ρ̄ Ẽ)+ ∂

∂xj
[(ρ̄ Ẽ + p̄)ũ j − σ̃ j i ũi + q̃ j ] = − ∂

∂xj

(
1

2
J j −D j + γCvQj

)
. (12)

Here,

σ̃i j = 2µ̃S̃i j − 2

3
µ̃δi j S̃kk, q̃ j = −k̃

∂ T̃

∂xj
, (13)

whereµ̃ is the molecular viscosity, and̃k is the thermal conductivity corresponding to the
filtered temperaturẽT . The effect of the subgrid scales appears through the SGS stresses
τi j , the SGS heat fluxQj , the SGS turbulent diffusion∂J j /∂xj , and the SGS contribution
to viscous diffusion,∂D j /∂xj ; these quantities are defined as

τi j = ρ̄(ũi u j − ũi ũ j ) (14)

Qj = ρ̄(ũ j T − ũ j T̃) (15)

J j = ρ̄(u j ukuk̃ − ũ j ũkuk) (16)

D j = σ j i ui − σ̃ j i ũ j . (17)

The equation of state has been used to express the pressure-diffusion correlation in terms
of Qj . It is also assumed here that

µ(T)Si j ' µ(T̃) S̃i j , (18)

and an equivalent equality involving the thermal conductivity applies. This assumption is
supported by thea priori study by Vremanet al. [17].

In the present work, the SGS stressesτi j and heat fluxQj are modeled using the plane-
averaged dynamic eddy-viscosity model [18, 19] in the form derived by Moinet al.[20] for
compressible flows. TheJ j andD j terms are neglected. The latter assumption is supported
by thea priori results of Mart`ın et al. [21], who examined isotropic turbulence decay at
turbulent Mach number of 0.52. In their study, however, the divergence ofJ j was found to
be a significant fraction of the divergence of the SGS heat flux; thus, the first assumption
may not be justified for high turbulent Mach numbers. In the present simulations, however,
the turbulent Mach number is significantly smaller than that examined by Vremanet al.
[17] and Mart`ın et al. [21] (it is of the order of 0.03–0.1), and the present assumption is
acceptable, at least to test the validity of the multi-block approach.

2.3. Numerical Scheme

The general conservation laws can be expressed as

∂U

∂t
= S(U ) ≡ −∂Fj (U )

∂xj
; (19)
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U ∈R5 is a vector whose components are the independent variables, andFj = Fcj − Fd j ∈R5

is the total flux (convective and diffusive) in thexj direction. They are defined by

U =


ρ̄

ρ̄ũi

ρ̄ Ẽ

, Fcj =


ρ̄ũ j

ρ̄ũ j ũi + p̄δ j i

(ρ̄ Ẽ + p̄) ũ j

, Fd j =


0

σ̃ j i − τ j i

σ̃ j i ui − q̃ j − γCvQj

; (20)

S =Sc−Sd is the global spatial differential operator. Equation (19) is discretized by ap-
proximatingU asUn

i, j,k at location(i1x1, j1x2, k1x3) and timetn= n1t , and solved
numerically.

To resolve properly the details of the boundary layer, the grid points are clustered near
the wall in the wall normal direction (z) while the spacing inx andy is kept uniform. The
numerical solutions are computed on a uniform grid in computational space (ξ, η, ζ ). The
transformation relations from physical space (x, y, z) to the computational space are

x = ξ, y = η, z= z(ζ ) (21)

and the wall-normal derivatives are computed in the regularζ -space, e.g.,

∂ f

∂z
= ∂ f

∂ζ

dζ

dz
,

∂2 f

∂z2
= ∂ f

∂ζ

d2ζ

dz2
+ ∂

2 f

∂ζ 2

(
dζ

dz

)2

, etc.

The Favre-filtered Navier–Stokes equations (10)–(12) thus become

∂U

∂t
+ ∂F

∂ξ
+ ∂G

∂η
+ ∂H

∂ζ

dζ

dz
− ∂Fd

∂ξ
− ∂Gd

∂η
− ∂Hd

∂ζ

∂ζ

dz
= 0, (22)

whereF = Fc1,G= Fc2, H = Fc3, and a similar notation is used for the diffusive fluxes.
Let Lx, L y, Lz be the dimensions of the computational domainÄ in thex, y, zdirections,

respectively. For the discretization ofÄ, let

xi = ξi1x (ξi = i − 1), i = 1, . . . ,nx (23)

yi = η j1y (η j = j − 1), j = 1, . . . ,ny (24)

z1 = 0, zk = 1− αζk

1− α 1z1 (ζk = k− 1), k = 2, . . . ,nz, (25)

where1x= Lx/(nx− 1),1y= L y/(ny− 1), andnx, ny are the number of grid points in
thex, y directions, respectively. A Cartesian non-uniform grid withnzpoints stretched with
geometric progression in the wall-normal direction is used;α=1zk+1/1zk is the constant
ratio of successive intervals, with1zk= zk+1− zk.

The numerical approximation to the spatial operatorSc(u) is

Sc(u) = −
[
δF

δx

∣∣∣∣
i, j,k

+ δG
δy

∣∣∣∣
i, j,k

+ δH

δz

∣∣∣∣
i, j,k

(
dζ

dz

)
z=zk

]
, (26)

whereδ f/δxl denote a finite difference operator acting onf with respect toxl .
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The approximation of the convective flux derivatives in the Navier–Stokes equations
is a key element of the spatial integration. Here, the discrete operator calculations are
independent inx, y, andz directions. For example,δF/δx|i, j,k is calculated component-
wise holding indicesj andk fixed, i.e., along a slice of data in thex-direction. A fourth-order
accurate scheme is used, in which the first derivative is constructed as the weighted sum of
a central-difference method and an upwind-biased method. This approach yields a scheme
with good modified wavenumber performance and a small level of dissipation at high
wavenumbers. DenotingFi, j,k as the discrete approximation of the convection fluxF at
(i1x1, j1x2, k1x3), thex-direction derivative is given by

δF

δx

∣∣∣∣
i, j,k

= 1

1x

[
1

180
(Fi+2, j,k − Fi−2, j,k)− 2

9
( fi+1, j,k − Fi−1, j,k)

+ 64

45

(
Fi+ 1

2 , j,k
− Fi− 1

2 , j,k

)]
, (27)

where, in order to find a 4th-order solution, it is required that

Fi+ 1
2 , j,k
= F

(
Ui+ 1

2 , j,k

)+ O(1x5). (28)

The Fi±1/2, j,k are calculated by an upwind-biased method; the fluxF is decomposed as

F(U ) = F+(U )+ F−(U ), (29)

whereF±(U )= A±(U )U andA±(U ) are such thatA= A+ + A− and±A±(U ) have real
and non-negative eigenvalues. The flux-vector-splitting method of Steger and Warming
[22] is employed. The high-order accuracy of the scheme is achieved by evaluating each
component of the conserved variables at cell interfacesUi+1/2, j,k with a 5th-order accurate
spatial interpolation of the node values. The resulting numerical flux function is

Fi+ 1
2 , j,k
= F+

i+ 1
2 , j,k
+ F−

i+ 1
2 , j,k

, (30)

where

F+
i+ 1

2 , j,k
=

A+
i+ 1

2 , j,k

128
(3Ui−2, j,k − 20Ui−1, j,k + 90Ui, j,k + 60Ui+1, j,k − 5Ui+2, j,k) (31)

F−
i+ 1

2 , j,k
=

A−
i+ 1

2 , j,k

128
(−5Ui−1, j,k + 60Ui, j,k + 90Ui+1, j,k − 20Ui+2, j,k + 3Ui+3, j,k). (32)

All the values required for the evaluation of the Jacobian matricesA±i+1/2, j,k are interpo-
lated across six grid points. For example, the speed of sound,a, is calculated as

ai+ 1
2 , j,k
= (3ai−2, j,k − 25ai−1, j,k+ 150ai, j,k+ 150ai+1, j,k − 25ai+2, j,k+ 3ai+3, j,k). (33)

The termsδG/δy|i, j,k and δH/δz|i, j,k in (26) are treated similarly. The modified
wavenumber properties of this conservative scheme are comparable to those of the non-
conservative method of Rai, Gatski, and Erlebacher [27] that was used for the simulation
of a spatially evolving compressible boundary layer.
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For the compressible Navier–Stokes equations (19) in a conservation-law form, the
second-order derivatives appear as first-order derivatives of the transport flux vectorsFd j .
These terms can be discretized in many ways, independently of∂Fcj/∂xj . Here, the dis-
cretization of the diffusive terms is carried out using a fourth-order-accurate centered dif-
ference method. For example, the first and second derivatives off with respect tox are
given by(
∂ f

∂x

)
i, j,k

= − fi+2, j,k + 8 fi+1, j,k − 8 fi−1, j,k + fi−2, j,k

121x
+ O(1x4) (34)(

∂2 f

∂x2

)
i, j,k

= − fi+2, j,k + 16 fi+1, j,k − 30 fi, j,k + 16 fi−1, j,k − fi−2, j,k

121x2
+ O(1x4). (35)

They-derivatives are obtained in the same manner. Owing to the treatment of the viscous
terms, the formal spatial accuracy of the global scheme is fourth order.

Replacing the spatial derivatives with the above approximations yields a set of the equa-
tions of the form

dUi, j,k

dt
= {S̃[U (t)]}i, j,k, (36)

whereS̃ is a 4th-order discrete approximate to the spatial operator in (19). Equation (36) is
a set of time-continuous coupled ordinary differential equations and any integration scheme
applicable to ODEs may be used. In general, explicit schemes are limited to a short time-step
owing to stability limitation; however, the implementation of the discretized equations in a
multi-block format (see below) is simplified when an explicit time advancement is adopted.
For this reason, an explicit third-order low-storage Runge–Kutta method [23] was used for
these calculations.

The fourth-order finite-difference scheme described above requires modifications for the
treatment of the non-periodic boundaries. The code adopts a fourth-order central differenc-
ing at pointsk= 3 andk= nz− 2 and reduces to second-order central scheme at points
k= 2 andk= nz− 1 for the convective and diffusive terms. Care was taken to maximize
the accuracy of the method at the near-wall points, while maintaining the stability of the
scheme; higher-order extrapolations make the scheme unstable [28].

2.4. Initial and Boundary Conditions

The initial condition was obtained from a single-block large-eddy simulation of the
incompressible turbulent flat-plate boundary layer. Uniform density and temperature fields
were specified. The Reynolds number wasReδ∗o = δ∗oU∞/ν≈ 1110, whereδ∗o is the initial
displacement thickness. The size of the computational domain was 120δ∗o×30δ∗o× 22δ∗o
in the streamwise, spanwise, and wall-normal directions, respectively; these dimensions
corresponded to 6570× 1640× 1230 wall units.

Periodic boundary conditions were used in the streamwise and spanwise directions, and
isothermal no-slip conditions were specified at solid surface,z= 0. The plate temperature
Tw was set equal to the free-stream temperatureT∞. The wall density was computed from
conservation of mass at the wall,

∂ρ

∂t
= −

[
∂(ρw)

∂z

]
w

, (37)
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and, along with the specified wall temperatureTw, was used to calculate the wall pres-
sure using the equation of state. The wall-normal derivative in (37) was approximated by
a second-order-accurate formula. At the top of the domain, the normal gradients of the
conserved variables were set to zero.

The use of periodic boundary conditions implies that the boundary layer develops in
time, rather than in the streamwise direction. To simulate properly a spatially developing
boundary layer, either inflow–outflow conditions must be used, or some other approximate
technique, such as the “fringe method” [24] must be adopted. Since the purpose of the
present calculation is to test the ILU concept, it was preferred not to introduce additional
uncertainties. Although this configuration is not the exact equivalent of a flat-plate boundary
layer, it contains many of the important physical features of that flow (inner- and outer-
layer scalings, for instance). Thus, it constitutes a consistent test case for the comparison
of single- and multi-block calculations.

2.5. Block Partitioning and Grid Distribution

Two types of calculations were performed; first, single-block computations were car-
ried out as baseline cases; then, multi-block computations were performed to validate
the proposed approach. In the single-block cases, 64× 48× 48 grid points were used in
the streamwise, spanwise, and wall-normal directions, respectively, to discretize a domain
whose size was equal to that of the initial field (120δ∗o× 30δ∗o× 22δ∗o); this resulted in an
initial grid resolution1x+o ≈ 103,1y+o ≈ 34, and1z+min,o= 0.15 (a subscripto indicates
that the initial friction velocity,uτ,o, and displacement thickness,δ∗o, were used for the
normalizations).

The multi-block calculations were carried out using the arrangement shown in Fig. 2.
Three rectangular subdomains were used, with conforming grids (the grid lines were
continuous across the interfaces). Interface and boundary conditions were specified by
using four “ghost points” to ensure that fourth-order accuracy was achieved even at the
sub-domain interfaces. These additional cells are filled at the start of each time step level

FIG. 2. Multi-block arrangement for 3D turbulent boundary layer.
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TABLE I

Grid Resolutions

z+o = 30 z+o = 104

Inner layer 64× 24× 24 64× 24× 32
Outer layer 64× 48× 24 64× 48× 16

in a manner that depends on the geometrical (internal or external interface) and physical
(wall, freestream, periodicity) nature of the boundary condition.

The inner layer was discretized using two subdomains, Blocks 1 and (1) in Fig. 2; the latter
is purely virtual and is a periodic copy of Block 1. The inner-layer unit had the same dimen-
sion in the streamwise direction as the single-block calculation and extended up to a height
zif , which could be varied. Its spanwise size wasL+y,o= 820. The dimensions of the ILU
were significantly larger than those of the “minimal flow unit” of Jimenez and Moin [13] and
were sufficient to contain several near-wall structures. The outer layer was discretized using
a single block (Block 2 in the figure), whose dimensions wereL+x,o= 6570, L+y,o= 1640;
in the wall normal direction, it extended fromz+if to L+z,o= 1230. Two values ofzif were
tested: in one case, the interface was placed in the buffer region, atz+o = 30, in the other,
in the logarithmic layer atz+o = 104. The grids used for the two cases are summarized in
Table I.

For the multi-block calculations, the initial condition had to modified to ensure regularity
at the interface between the virtual inner-layer block and the outer block. This was achieved
by assigning a generic variableq at pointy+ L y/2 to be the average of the same variable
in the single-block calculation,qs, at pointsy and y+ L y/2. An exponentially decaying
function ofz was used to decrease the contribution of the pointy asz increased,

q(x, y+ L y/2, z, 0) = [1− g(z)] qs(x, y, z, 0)+ g(z)qs

(
x, y+ L y

2
, z, 0

)
∀ 0≤ x ≤ Lx, 0≤ y ≤ L y/2, zif ≤ z≤ Lz, (38)

whereg(z) is defined as

g(z) = 1

tanh(β)
tanh

[
β(z− zif)

Lz− zif

]
. (39)

The choice of the interface locationzif and of the parameterβ, which controls the thickness
of the region over which the function transitions from 0 to 1, may affect the results signifi-
cantly, as will be shown later.

3. RESULTS AND DISCUSSION

Large-eddy simulations were carried out for two values of the Mach number,M∞= 0.3
and M∞= 0.7. The mean flow temperature and density were chosen to beT∞= 300 K
and ρ∞= 1 kg/m3. In the viscosity law,Tr = 273 K, and the reference viscosity was
µr = 1.71× 10−5 kg/(m · s) andµr = 3.99× 10−5 kg/(m · s) for the two calculations, re-
spectively. The Reynolds numbers per unit length (Re/ lr = 5.66× 106 m−1) was maintained
constant while the Mach number was changed.
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FIG. 3. Time history of non-dimensional boundary layer displacement thickness and shear stress at the wall.
—, M = 0.3; · · · ,M = 0.7.

As mentioned in Subsection 2.4, the adoption of periodic boundary conditions implies that
the boundary layer is growing in time, rather than in space. Figure 3 shows the time-evolution
of the displacement thicknessδ∗ and wall stressτw for the single-block calculations. The
simulation was stopped when the boundary layer thickness became comparable with the
height of the computational domain, after approximately 2.5 LETOTs. Over this period, the
wall stress decreased by half, and the friction velocity by 30%; thus, the Reynolds number
based onδ∗, uτ andν ranged from 55 to 45 for the low Mach number case, and from 55 to
47 in the high Mach number calculation.

Figure 4 shows the profiles of the plane-averaged mean velocity,u+ = 〈u〉/uτ and trace
of the resolved Reynolds stresses,〈q2〉= 〈u′′i u′′i 〉 (whereu′′i = ūi −〈ūi 〉 and〈·〉 indicates an
average over the two homogeneous directions) obtained from the single-block calculations
at the times corresponding toReδ∗ =U∞δ∗/ν= 2230. The instantaneous friction velocity is
used to normalize both quantities. A well-defined logarithmic layer is observed in both cases,
although its intercept is higher (approximately 7, instead of the standard value of 5.2) due to
the low resolution used, which results in an overestimation of the thickness of the wall layer,
and in a lower value of the wall stressτw. Correspondingly, high values of〈q2〉 are observed.

Several multi-block calculations, whose parameters are summarized in Table II, were
compared with the single-block calculations. The multi-block calculations differed by the
height of the interface between the two layers, and by the thickness of the transition layer
(i.e., by the parameterβ). In addition, in two of the calculations the initial condition was
modified by adding a random noise component to match the initial plane-averaged Reynolds
stress distribution. The weighted-average procedure described in Subsection 2.4 results in
a defect in the plane-averaged Reynolds stresses equal to

1〈u′′i u′′j 〉 = 2g(z)[1− g(z)]〈u′′i u′′j 〉. (40)
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FIG. 4. Mean velocity profiles and trace of the resolved Reynolds stresses atReδ∗ = 2230. Lines,M = 0.3;
lines with symbols,M = 0.7.

To correct this defect, a procedure similar to that used by Lundet al.[25] to generate inflow
conditions for spatially developing simulations was followed. At each vertical location,
three sequences of random numbers with zero mean, unit variance, and zero covariance
with the other two distributions were generated. These uncorrelated random fluctuations
were then scaled and combined to match1〈u′′i u′′j 〉. The resulting signals were added to
each component of the velocity field. This procedure has two effects: first, it gives an initial
condition whose second-order statistics match exactly those of the single-block calculation;
second, the random fluctuation scrambles somewhat the initial periodicity of the flow at the
interface; this was expected to be beneficial in decreasing the thickness of the transition
layer. As will be shown later, this correction proved ineffectual because the uncorrelated
random noise was rapidly dissipated.

In Fig. 5 the mean velocity profiles after 1 LETOTs are shown. Practically no difference
can be observed between the various cases at this time. The same behavior is obtained at
later times for this case, as well as for the higher Mach-number case.

TABLE II

Summary of Simulation Parameters

Case M z+if,o Parameters

003 0.3 — Single block
103 0.3 30 Thick transition (β = 15)
203 0.3 30 Thin transition (β = 90)
303 0.3 30 Thin transition (β = 90), random noise correction
403 0.3 104 Thin transition (β = 90), random noise correction
007 0.7 — Single block
307 0.7 30 Thin transition (β = 90), random noise correction
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FIG. 5. Mean velocity profiles attuτ,o/δ∗o = 1 for M = 0.3. —, single block;· · · , z+if,o≈ 30 wide transition; ---,
z+if,o≈ 30 narrow transition; – – –,z+if,o≈ 30 narrow transition and random noise; – - –,z+if,o≈ 104 narrow transition
and random noise.

Figure 6 shows the rms turbulence intensities,ui,rms=〈u′′2i 〉1/2, for the low Mach-number
case attuτ,o/δ∗o= 1. The defect due to the intialization procedure is particularly evident
in the spanwise fluctuations (Fig. 6b), but byz+ ≈ 60 the fluctuations are again fairly
accurate. The effect of the initial conditions persisted for the entire period studied; even
after 2.5 LETOTs a small defect was observed. Since the calculation had to be stopped at that
time, it could not be verified whether (as one would expect) in a steady-state case the flow
would eventually lose the memory of the initial condition. In the wide-transition calculation
the defect extends to a thicker region (roughly, 30< z+< 150). Overall, the most accurate
results were obtained when the interface was placed in the logarithmic region.

The addition of the random noise, as mentioned before, did not improve the results: al-
though attuτ,o/δ∗o= 0 the rms profiles match exactly those of the single-block calculations,

FIG. 6. Turbulence intensities attuτ,o/δ∗o = 1 andM = 0.3. (a) Streamwise, (b) spanwise, (c) wall normal. —,
single block;· · · , z+if,o≈ 30, wide transition; – – –,z+if,o≈ 30, narrow transition; – - –,z+if,o≈ 104, narrow transition.
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FIG. 7. Spanwise turbulence intensity attuτ,o/δ∗o = 1 andM = 0.3; z+if,o≈ 30. —, narrow transition;s, narrow
transition and random noise.

the random noise component is quickly dissipated. For example, attuτ,o/δ∗o= 1 calculations
with and without random noise give the same results, as shown in Fig. 7.

The resolved Reynolds shear stress,−〈ρu′′w′′〉 normalized byτw, is shown in Fig. 8 for
the M = 0.3 calculation. The differences observed in the rms intensities are more evident
here. The calculations in which the interface is in the buffer layer underpredict the stress
throughout the buffer and logarithmic regions; more accurate prediction of the stresses is
obtained when the interface is in the logarithmic region. The maximum contribution of
subgrid-scale shear stresses on the resolved ones is about 8% of the shear stress at the wall.

At the higher Mach number (Fig. 9), similar results are obtained. However, the agreement
is better, even for an interface in the buffer layer. This result may be due to the fact that at
higher Mach number the convection effects are more significant, and stronger non-linear
interactions scramble the initial periodicity more rapidly.

The first- and second-order statistics obtained using the multi-block approach with a
periodic inner-layer unit compare well with those of single-block calculations at both Mach
numbers examined. The main effect of the interface on the results is due to the initialization
procedure, which results in a Reynolds-stress defect that was not recovered by the time the
calculation was stopped. One could conjecture that if the flow were statistically steady, and
enough time were given for the nonlinear interactions, the defect would be completely filled
in; the high-Mach number results support this argument. In any case, when the interface
is located in the logarithmic layer this defect is rather small, and good agreement with the
single-block calculations is achieved.

The effect of the interface periodicity on the turbulence structure in the outer layer
remains to be investigated. To this end, define the two-point autocorrelation of an arbitrary

FIG. 8. Resolved Reynolds shear stress forM = 0.3. (a) tuτ /δ∗ = 0.4; (b) tuτ /δ∗ = 2. —, single block;
· · · , z+if,o≈ 30, wide transition; ---,z+if,o≈ 30, narrow transition; – - –,z+if,o≈ 104 narrow transition.



FIG. 9. Turbulence intensities and Reynolds shear stress attuτ,o/δ∗0 = 2 andM = 0.7. (a) Streamwise rms,
(b) spanwise rms, (c) wall normal rms, (d) Reynolds shear stress. —, single block; – – –,z+if,o≈ 30, narrow transition.

FIG. 10. Two-point spatial autocorrelation functionRuu at tuτ,o/δ∗o = 1 for M = 0.3. (a)z+o ≈ 10, (b)z+o ≈ 35,
(c) z+o ≈ 167. —, single block;· · · , z+if,o≈ 30 wide transition; ---,z+if,o≈ 30 narrow transition; – - –,z+if,o≈ 104
narrow transition.

272
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fluctuating velocity componentq′′,

Rqq(r, z; t) = 〈q
′′(x, y, z; t)q′′(x, y+ r, z; t)〉

〈q′′(x, y, z; t)2〉 . (41)

The streamwise-velocity autocorrelation is shown in Fig. 10 attuτ,o/δ∗o= 1, and at three
distances from the wall (normalized usinguτ,o). At z+o ≈ 10, the two-point correlation goes
to zero well before half of the sub-domain width, showing that the width of the ILU is
sufficient to include the widest structures present in the flow. Incidentally, the negative peak
of the two-point correlation corresponds to an average streak spacing ofλ+ ≈ 200, twice the
experimental value; this result is consistent with the high intercept of the logarithmic layer
and the thicker wall layer. Atz+o ≈ 35 (one grid point above the interface), the periodicity
of the interface condition results in a secondary peak of the two-point correlation atL y/2
(i.e.,r/δ∗ ' 14). This secondary peak is higher (approximately 0.93) for the thick transition
case; for the thin transition, it is reduced to 0.83. In the outer layer, atz+o ≈ 167 no correlation
can be observed for either interface.

To determine the thickness over which the periodicity effects are felt, Fig. 11 shows the
value of the secondary peak,Ruu(L y/2), as a function ofz after 0.4 and 2 LETOTs. The
narrow-transition calculations have a very rapid decrease of the secondary peak: within 4
grid points of the interface (about half a displacement thickness) the peak has decreased by
75%. Most of the outer layer is not affected at all by the periodicity introduced by the ILU.
The same behavior is observed in the correlations for the other velocity components.

Since the non-periodicity of the outer layer is essentially due to the initial conditions, it
is important to determine whether the flow tends to return to a periodic state or settles into
a non-periodic one. To answer this question, the time development of the secondary peak
is shown in Fig. 12. The thickness of the layer over which the secondary peak is significant
does not change fortuτ /δ >1, indicating that, after a fairly short transient, the flow does
indeed settle to a non-periodic state.

The rapid loss of periodicity can also be illustrated through the instantaneous contours
of the fluid-dynamic variables. In Figs. 13 and 14 the velocity contours are shown for

FIG. 11. Two-point spatial autocorrelation functionRuu(L y/2). (a)tuτ /δ∗ = 0.4, (b)tuτ /δ∗ = 2. —,z+if,o≈ 30,
wide transition,M = 0.3; · · · , z+if,o≈ 30, narrow transition,M = 0.3; ---, z+if,o≈ 104, narrow transition,M = 0.3;
– – –,z+if,o≈ 30, narrow transition,M = 0.7. The vertical lines represent the two interfaces.
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FIG. 12. Two-point spatial autocorrelation functionRuu(L y/2) for the M = 0.7 case. —,tuτ /δ= 0.1,
· · · , tuτ /δ= 1, ---, tuτ /δ= 2., – – –,tuτ /δ= 2.5.

FIG. 13. Instantaneous velocity iso-contours forM = 0.3, tuτ /δ∗ = 1. z+if,o≈ 30, thin transition. (a)u; (b) v;
(c)w. Dashed lines, virtual block.
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FIG. 14. Instantaneous velocity iso-contours forM = 0.3, tuτ /δ∗ = 1. z+if,o≈ 104, thin transition. (a)u; (b) v;
(c)w. Dashed lines, virtual block.

the two values of the interface location. It is quite remarkable to observe the difference
in the structures between the two halves of the domain. The large structure observed in
the v contours aty/δ∗ ≈ 15 andz/δ∗ ≈ 4 in Fig. 14b is one example of a completely
asymmetric eddy which must obviously result from the non-linear interactions between the
wavenumbers present in the ILU and the longer wavelengths above the interface. Also notice
that the high- and low-interface simulations were started from the same initial conditions;
thus one would expect a similar distribution of the turbulent eddies at corresponding times.
Such is the case; if Figs. 13 and 14 are compared, the large structures appear to be located
roughly at the same place and have similar strength. For the different interfaces, some
temporal decorrelation is caused by the modification of the initial condition. In an unstable
flow such as this one, small differences in the initial conditions are amplified, and eventually
lead to a complete loss of correlation. However, the statistics should not be affected, as is
the case in the present calculation.

Another consequence of the modification of the initial conditions is due to the solenoidal
character of the initial field. When the region corresponding to the ILU is removed, and the
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FIG. 15. Time sequence of the iso-contours of the pressure fluctuations (normalized byτw) for M = 0.3.
z+if,o≈ 104, thin transition. (a)tuτ /δ∗ = 0.01; (b)tuτ /δ∗ = 0.4; (c) tuτ /δ∗ = 1. Dashed lines, virtual block.

velocity above it is replaced by the weighted average, the resulting initial field is no longer
divergence free. This introduces a pressure disturbance at the interface between the virtual
and outer-layer blocks (Fig. 15a) which decays in time (Figs. 15b and 15c). After 1 LETOT
the pressure contours for the interface in the logarithmic layer have decreased in magnitude
and are reasonably smooth.

When the interface is located in the buffer layer the situation is exacerbated by the fact
that in a boundary layer the pressure tends to propagate unchanged across the layer. This
forces a coupling between inner and outer layer in the portion of the calculation bounded
by the virtual block. The ILU determines the pressure at the wall and the outer layer
eddies the structure of the pressure away from the wall. This mismatch between inner and
outer layer pressure fields cannot be bridged when the ILU is very thin, and some level of
pressure disturbance remains throughout the simulation (Fig. 16). However, these pressure
disturbances do not affect the velocity contours (shown at the same location in Fig. 13).
When the interface is placed further from the wall, the flow adjusts and smoother pressure
contours result.
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FIG. 16. Iso-contours of the pressure fluctuations (normalized byτw) at tuτ /δ∗ = 1. M = 0.3, z+if,o≈ 30, thin
transition. Dashed lines, virtual block.

4. CONCLUSIONS

An approach for the treatment of the near-wall layer in turbulence simulations has been
presented that, in flows that have one direction of homogeneity, allows substantial savings
of CPU time and memory over conventional methods. This method uses computational
domains whose size is determined by the local scaling. The inner layer is resolved by a sub-
domain (“inner-layer unit” or ILU) whose size is fixed in wall units. The ILU is then repeated
periodically as many times as required to match the dimensions of the outer layer sub-
domain, which is determined by the size of the larger eddies present in the core of the flow.

Multi-block simulations with an ILU that is extended periodically give good agreement
with single-block calculations for first- and second-order statistics, especially if the interface
is located in the logarithmic layer. Placing the interface in the buffer layer, where much of the
turbulent activity takes place, results in underprediction of the Reynolds stress magnitudes
and spurious pressure fluctuations.

An important finding of this paper, that proves the feasibility of the proposed approach,
is that the periodicity introduced at the interface between the inner and outer layers does
not spread outwards. Within a few grid points, larger structures are generated, and the
correlation between the two halves of the domain is lost.

In the present study, only modest computational savings were achieved: the two multi-
block calculations required only 25 and 33% fewer points than the single-block calculation.
Increases of the Reynolds number would increase the savings, but only up to a point. A multi-
layer approach is required to reach higher Reynolds numbers. If non-conforming meshes of
the type employed by Kravchenkoet al. [12], for instance, are used, such that the spanwise
and streamwise spacings of the outer-layers can be increased over those of the inner-layer
sub-domain, additional savings can be achieved. An estimate of the possible savings can
be obtained if one considers the Kravchenkoet al. [12] calculation of plane channel flow
at Reτ ' 4,000. If ILUs were used in the first three regions, each with a streamwise and
spanwise domain size that is half that of the next layer, only 15% of the points used originally
would be required. If the domains maintained the same streamwise length, and were reduced
only in the spanwise direction, 27% of the points would be necessary.

As mentioned above, this technique requires the existence of at least one direction of
homogeneity in the flow and may not be applicable in highly three-dimensional flows.
However, there may be a range of intermediate configurations in which one could use
periodically repeated inner-layer units in some regions of the flow only. To compute the
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flow over an airplane wing, for instance, it might be possible to use periodically repeated
inner layer units away from strong sources of three-dimensionality (the wing root and tip
regions, the engine nacelles, etc.). Several layers, with increasing spanwise extent, non-
conforming meshes would also be beneficial. Furthermore, a multiblock approach could be
applied in the streamwise direction as well, joining narrower boxes to wider ones. These
issues require further study.
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